Tamworth Water Quality Report

Jill Emerson, Water Quality Coordinator Grace Piselli, AmeriCorps Water Quality Resource Assistant

RIVERS Field Sampling Parameters

Total Phosphorus (TP)

- Valuable nutrient, alongside
 Nitrogen, for plant development
- High levels indicate elevated decomposition (ie. sewage inputs)

Conductivity

- Ability of water to pass an electrical charge
- Based on the amount of positively (Mg+, Ca+) or negatively (Cl-, NO₃-) charged elements

Dissolved Oxygen (DO)

- Measure of how much oxygen is available for aquatic organisms
- Different species require different DO levels

Stream Characteristics

-site changes

-substrate

-general observations

Turbidity

Clarity of the fluid
Determined by the
amount of suspended
particulates

<u>Temperature</u>

- Influences:
 - biological activity
 - plant growth
 - rate of chemical reactions
 - DO levels

pН

- Pure water is 7 (neutral)
- Most water in NH is slightly acidic (~6.5)
- Optimal levels to support aquatic organisms: 6.5 8.2

Water Quality Standards & Allowable Limits

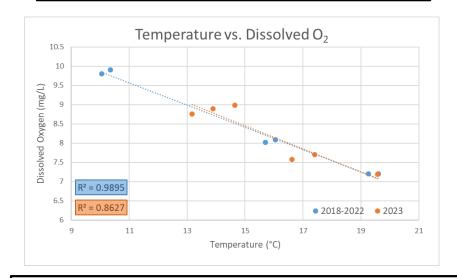
- Turbidity
 - o < 10 NTU
- Temperature
 - No standard, but monitored for changes
- pH
 - 0 6-8
 - Preferably closer to 6.5
- Dissolved Oxygen (DO)
 - o 6 11 mg/L
 - 0 75% 120%
- Conductivity
 - < 100 μS/cm</p>
- Total Phosphorus (TP)
 - 0 < 30 μg/L</p>
 - Anything above is considered "nuisance levels"

Based on NHDES and EPA Criteria

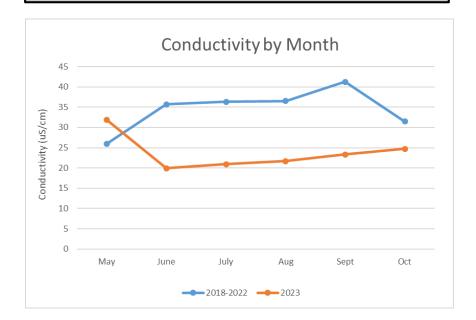
Each site monitored will vary slightly due to differences in geology, plant life, site characteristics, etc.

GT-1 Bearcamp River: 2018 - Oct. 2023

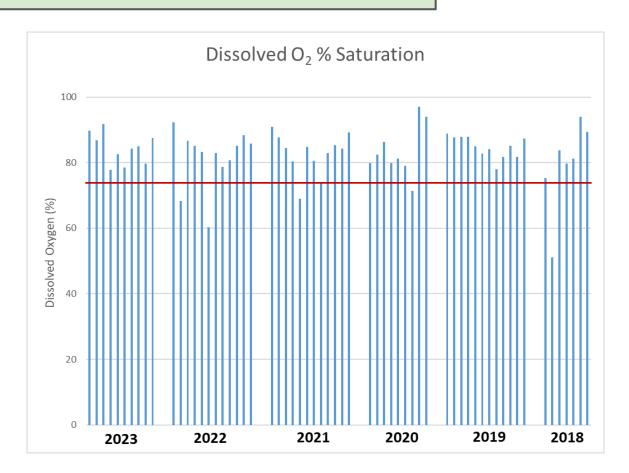
- Monitored since 2002
- Parameters collected: pH, turbidity, TP, temperature, conductivity, DO


Parameter	Status*
Turbidity	Stable
рН	Usually near or below 6, well above 6 in 2023
Total Phosphorus	Stable

*Data from 2018- Oct. 2023


GT-1 Bearcamp River: 2018 - 2023

Dissolved Oxygen (DO) has an inverse relationship with temperature: as temperature increases, DO decreases.



The R² value from 2023 (<u>orange</u>) is lower than the 2018-2022 value (<u>blue</u>). This indicates inconsistent fluctuations in DO. All values <u>exceed the 6.0 mg/L</u> requirement, yet a decreasing trend raises concern.

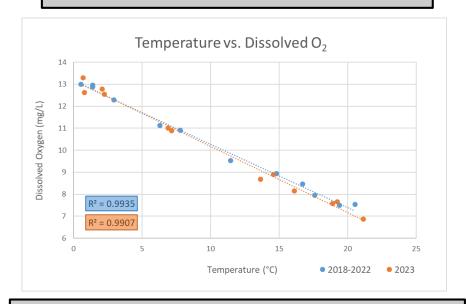
Conductivity shows a series of lower values at GT-1 in 2023 compared to 2018-2022. Values are <u>below 100 uS/cm</u>, indicating relatively good water quality in respect to salt concentrations.

GT-1 Bearcamp River: 2018 - 2023

New Hampshire State DO standard for Class A waters is above 75% during the months GMCG tests.

GT-4 Chocorua River: 2018 - Dec. 2023

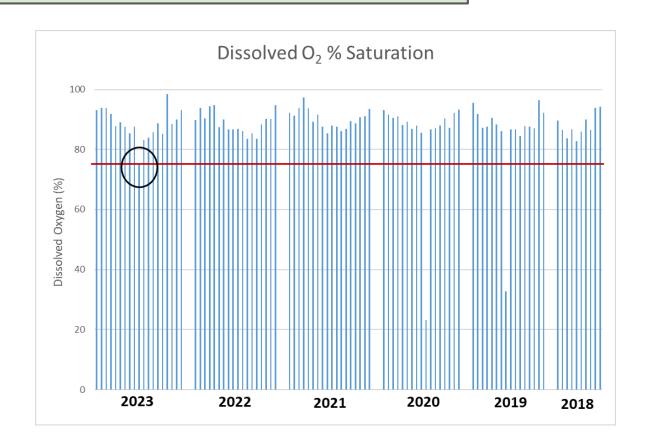
- Monitored since 2004
- Parameters collected: pH, turbidity, TP, temperature, conductivity, DO


Parameter	Status*
Turbidity	Stable
рН	Stable
Total Phosphorus	Stable

*Data from 2018- Oct. 2023

GT-4 Chocorua River: 2018 - 2023

Dissolved Oxygen (DO) has an inverse relationship with temperature: as temperature increases, DO decreases.

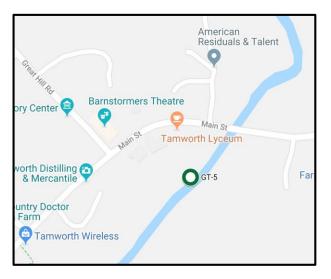


The R² values from 2023 (orange) show a similar set of values compared to the compiled 2018-2022 (blue). This indicates little change in DO levels. All values exceed the 6.0 mg/L requirement.

Conductivity shows a series of lower values at GT-4 in 2023 compared to 2018-2022. All values in 2023 are <u>below 100</u> <u>uS/cm</u>, indicating adequate water quality in respect to salt concentrations.

GT-4 Chocorua River: 2018 - 2023

New Hampshire State DO standard for Class A waters is above 75% during the months GMCG tests.

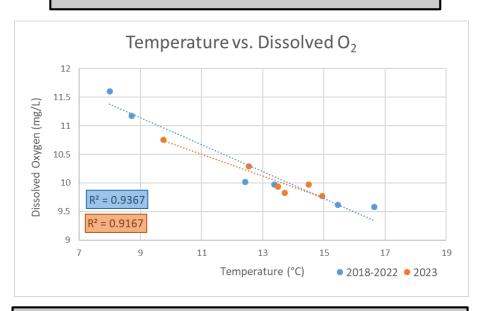

GT-4 Chocorua River: 2018 – Oct. 2023

Parameter	Status
Ammonium	Stable
Orthophosphate	Exceeds pristine limit of less than 10ug/L
Dissolved Organic Carbon	Stable
Total Dissolved Nitrogen	Stable
Chloride	Exceeds pristine limit of less than 10mg/L
Nitrate	Stable
Sulfate	Stable
Sodium	Stable
Potassium	Stable
Magnesium	Stable
Calcium	Stable
Dissolved Organic Nitrogen	Stable

Parameter	Typical Pristine Surface Water Concentrations
Ammonium	<0.2mg/L
Orthophosphate	<10ug/L
Dissolved Organic Carbon	N/A; between 1-10mg/L
Total Dissolved Nitrogen	<0.5mg/L
Chloride	<10mg/L
Nitrate	<50ug/L
Sulfate	<80mg/L
Sodium	<50mg/L
Potassium	<10mg/L
Magnesium	1-100mg/L
Calcium	<15mg/L
Dissolved Organic Nitrogen	N/A

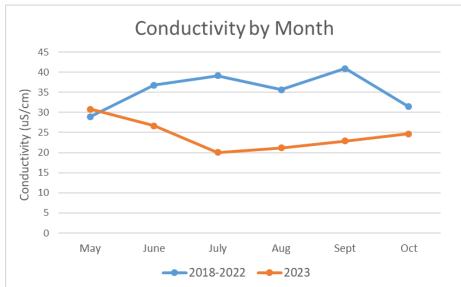
GT-5 Swift River: 2018 – Oct. 2023

- Monitored since 2005
- Parameters collected: pH, turbidity, TP, temperature, conductivity, DO

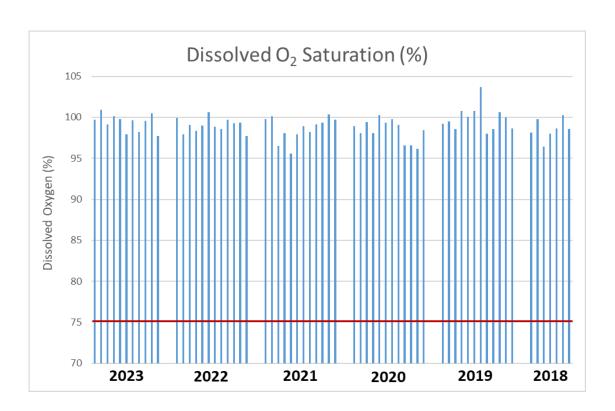


Parameter	Status*
Turbidity	Stable
рН	Stable
Total Phosphorus	Stable

*Data from 2018 - Oct. 2023


GT-5 Swift River: 2018 - 2023

Dissolved Oxygen (DO) has an inverse relationship with temperature: as temperature increases, DO decreases.



The R² value from 2023 (<u>orange</u>) is similar to the compiled 2018-2022 value (<u>blue</u>). This indicates little change in DO levels. All values <u>exceed the 6.0 mg/L</u> requirement.

Conductivity shows a series of lower values at GT-5 in 2023 compared to 2018-2022. Values are <u>below 100 uS/cm</u>, indicating good water quality in respect to salt concentrations.

GT-5 Swift River: 2018 - 2023

New Hampshire State DO standard for Class A waters is above 75% during the months GMCG tests.

Tamworth Water Quality Summary

- ➤ The majority of parameters tested fell within the acceptable limits for surface waters set by the New Hampshire Department of Environmental Services (NHDES) and/or the Environmental Protection Agency, however...
 - o GT-1
 - pH: Within limits, but <u>highest it has been in the past 5 years</u>
 - DO: All values are within limits, but few approach the 75% minimum
 - o GT-4
 - DO: One value below the 100 uS/cm limit
 - Orthophosphate: Over the pristine standard of 10ug/L, and the highest its been in 5 years.
 - Chloride: Over the pristine standard 10 mg/L, but fairly consistent year to year
 - GT-5
 - Parameters within normal and expected ranges in 2023

What can Tamworth do to protect its waters?

- 1. Encourage residents to get their septic system checked
- 2. Minimize salt application on roadways, especially around bodies of water and other sensitive habitats
 - a. Brine is a equally effective and more environmentally friendly alternative
- 3. Maintain riparian habitats (aka Streamside Management Zones) around bodies of water
- 4. Use Best Management Practices (BMPs)
 - a. Proper disposal of chemicals and other anthropogenic waste
- 5. Monitor the effectiveness of culverts in your town, and replace those posing as safety and environmental hazards

Thank You For Your Time

Report respectfully submitted by:

J. Emerson, Water Quality Coordinator

G. Piselli, AmeriCorps Water Quality Resources Assistant